
0 7 4 0 - ​7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E 	 SEPTEMBER/OCTOBER 2015 | IEEE SOFTWARE � 13

Editor: Eoin Woods
Endava
eoin.woods@endava.com

Aligning Architecture
Work with Agile Teams
Eoin Woods

THE PRAGMATIC
ARCHITECT

AGILE SOFTWARE DEVELOP-
MENT is a very commonly practiced
approach for software delivery, and
today the software architect’s role in
making key project design decisions
is broadly recognized. However, in
my experience, difficulties frequently
arise when agile development teams
and software architects work to-
gether. These difficulties—caused by
differing priorities, languages, and,

sometimes, development philoso-
phies—often result in development
teams dismissing software architec-
ture as “big design up front” and, in
turn, architects producing architec-
tural work that isn’t useful for agile
teams.

Conflict between architects and
agile teams is also problematic for
organizations, causing them to miss
the benefits that accrue when archi-
tects and agile development teams
work effectively together. Agile
teams are often great at delivering
useful software in a timely manner,
but I’ve seen them encounter prob-

lems with factors such as security,
system monitoring, or systems in-
tegration, which product owners
don’t tend to prioritize. However,
this is where software architects can
help, because they address exactly
these areas.

In an earlier column in this de-
partment, Eltjo Poort explained how
the Risk-​ and Cost-​Driven Architec-
ture approach helps architects align

their work with agile teams.1 In this
column, I propose some other, more
general, ways to achieve this.

Agile Software Development
Agile software development can re-
fer to many specific software devel-
opment methods, the best known
being Scrum and Extreme Program-
ming (XP). What unifies agile ap-
proaches is their commitment to the
well-​known agile manifesto,2 a phi-
losophy that values

•	 software that works over com-
prehensive documentation,

•	 customer collaboration over
contract negotiation,

•	 individuals and interactions over
processes and tools, and

•	 response to change over follow-
ing a plan.

Although the manifesto acknowl-
edges that all these items have value,
it elegantly makes the point that
working software, customer collabo-
ration, individuals and interactions,
and responding to change are the
most important.

Few people would disagree with
these principles—who honestly pre-
fers completed documentation over
software that works? What’s re-
markable is the strong community
that’s formed around these simple
statements to create agile software
development.

Software Architecture
I’ve previously defined and charac-
terized the software architect’s role,3
but I’ll summarize it again here: ar-
chitects are responsible for the de-
sign decisions that are risky, costly,
hard to change later, or all three.
The architect also

•	 focuses on design work;
•	 meets the needs of a wide stake-

holder community (well beyond
users and acquirers);

•	 addresses systemwide concerns
(which are often nonfunctional);

Certain architecture practices
encourage architecture work that
supports agile development.

THE PRAGMATIC ARCHITECT

14	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

•	 balances competing concerns
to find acceptable solutions to
design problems; and

•	 provides the leadership required
to ensure that the system’s ar-
chitecture is well understood
and supports its successful
implementation.

Working Together
Having worked as a software archi-
tect with many agile teams over the
last 10 years, I’ve realized that cer-
tain architecture practices encour-
age architecture work that supports
agile development. These practices
were inspired by and draw on dif-
ferent aspects of the agile manifesto
(see Figure 1).

Let’s briefly explore each practice
to understand how they fit together.

Allow for Change
The agile manifesto urges architects
to embrace change rather than rely
on a plan. The following practices
make architecture work more ame-
nable to change.

Deliver incrementally. When work-
ing on a significant piece of design
work, it’s tempting to seek perfec-
tion before sharing it. However, ag-
ile principles encourage the oppo-

site: architects should initially make
a minimum number of key decisions
and then a flow of decisions when
needed to meet the system’s deliv-
ery goals. This approach allows the
work to respond to changing pri-
orities and the increased knowl-
edge that’s available as the project
progresses. In practice, I’ve found
that initially you need just enough
architecture work to define the key
system structures, address the main
risks, and get the work started. You
can then refine the architecture as
the project develops. Eltjo Poort ex-
plained how to use risk and cost to
drive this decision flow.1

Capture clear architecture prin-
ciples. Agile teams need each team
member to be able to make good de-
sign decisions. Architects can sup-
port this by defining clear principles
that help team members understand
why the architectural structures exist
and the architecture’s most impor-
tant characteristics. Such principles
give team members a mental frame-
work they can use when extending
and changing the architecture.

Capture decisions and rationale. In
a similar way, architects can help the
team understand decisions by captur-

ing important design decisions and
rationale4 and verbally explaining
them regularly so that they become
part of the project’s aural tradition.

Define components clearly. As sys-
tems evolve, new components are in-
troduced, existing ones are changed,
and component interactions are al-
tered. Architects need to clearly de-
fine each component: each one needs
a good name, a clear set of respon-
sibilities, well-​defined communica-
tion interfaces, and a precise set of
required dependencies. Without this
knowledge, it’s very difficult for the
system structure to evolve coherently.

People over Processes and Tools
The agile manifesto reminds software
architects that people, not processes
and tools, create the software. The
following key practices reflect this.

Share information using simple
tools. A key part of a software ar-
chitect’s job is communicating the
architecture to relevant stakehold-
ers, such as infrastructure designers,
end users, and compliance officers,
as well as the development team. Al-
though sophisticated modeling tools
can be valuable, particularly for the
software architect, I’ve found that
effective stakeholder communica-
tion is best achieved through sim-
ple, familiar mechanisms such as
wikis; presentations; and short, ac-
cessible documents.

Have customers for every deliver-
able. It’s easy to write a seemingly
important document before consid-
ering who should read it. This ap-
proach often results in a document
that no one wants. To focus the ar-
chitecture work on high-​value areas,
architects should have a defined pur-
pose and audience in mind when cre-

Allow for change

• Deliver incrementally
• Capture clear architecture principles
• Capture decisions and rationale
• De
ne components clearly

People over processes and tools

• Share information using simple tools
• Have customers for every deliverable

Collaboration over contracts
• Work in teams, don’t just deliver documents
• Focus design on stakeholder concerns
• Focus on architectural concerns

Software over documents
• Create “good enough” architectural artifacts
• Deliver something that runs
• De
ne solutions for cross-cutting concerns

FIGURE 1. Practices for successful agile architecture.

THE PRAGMATIC ARCHITECT

	 SEPTEMBER/OCTOBER 2015 | IEEE SOFTWARE � 15

ating deliverables, thereby maximiz-
ing their usefulness.

Software over Documents
Agile software development em-
phasizes the value of software that
works over documentation describ-
ing how it should work. This princi-
ple has inspired the following archi-
tecture practices.

Create “good enough” architec-
tural artifacts. Because a system’s
architectural models and documents
can be quite significant pieces of
work, architects take understand-
able pride in creating comprehensive,
polished results. However, these de-
liverables aren’t part of the final sys-
tem and should be fit-​for-​purpose
rather than polished to perfection.
This isn’t an excuse for sloppy work,
but rather a guide for when it’s time
to move on to the next task.

Deliver something that runs. Every
thing we do needs to be validated
and tested, whether it’s production
code or design principles and ideas.
In architectural design, this means
that rather than creating documents
full of theoretical ideas, architects
should deliver something that vali-
dates the architectural thinking. The
best way to do this, in many cases,
is by developing examples and pro-
totype implementations that validate
the key ideas, prove their feasibility,
and allow them to be understood
and adopted quickly.

Define solutions for cross-​cut-
ting concerns. Some design aspects
are complicated because they affect
many aspects of the system’s imple-
mentation (they “cut across” the sys-
tem’s structure). These design deci-
sions normally address qualities like
security or scalability and should

be a major focus of the architec-
ture work. Delivering clear, proven
solutions for each of the system’s
important quality properties is tre-
mendously valuable because it frees
the team to focus on design aspects
that might be more interesting to the
product owners, while still allowing
them to achieve the required quali-
ties in the system.

Collaboration over Contracts
The final aspect of the agile mani-
festo urges software architects to
collaborate rather than maintain
formal boundaries and agreements.
Collaboration is key to effective ar-
chitecture work and is supported by
the following practices.

Work in teams, don’t just deliver
documents. A common complaint
about software architects is that they
work separately from the people af-
fected by their decisions. To avoid this,
architects need to collaborate with
development teams, working directly
with and in teams wherever possible.
This allows ideas to flow both ways—
helping the architect understand the
real problems to be solved and helping
the team use and develop the architec-
ture as the system is built.

Focus design work on stakeholder
concerns. Software architects can
easily create architectures that are
“scalable” or “flexible” or “effi-
cient” without considering what the
system’s stakeholders really need.
Therefore, another aspect of col-
laboration is ensuring that the ar-
chitectural design work aligns with
stakeholder needs and focuses on the
system’s most important aspects.

Focus on architectural concerns.
When working with development
teams, software architects must be

engaged in a way that teams find valu-
able. I’ve found this is best achieved
by focusing on the cross-​cutting con-
cerns in the system, such as common
design patterns, how the system will
be deployed, and how the critical
qualities (such as security or avail-
ability) will be achieved. You might
remember the “architecting in the
gaps” metaphor for identifying archi-
tecture work.5 Taking ownership of
these “gaps” is a useful service that
architects can provide to the team.

S oftware architects and ag-
ile development teams have
a mixed history of working

together, which is unfortunate but
rectifiable. With a little flexibility
and goodwill on both sides, software
architects can channel their efforts
through practices aligned with agile
development’s underlying principles.
By using these practices, architects
can work constructively with agile
teams and significantly contribute to
a project’s success.

References
1. E.R. Poort, “Driving Agile Architecting with

Cost and Risk,” IEEE Software, vol. 31,
no. 5, 2014, pp. 20–23.

2. “Manifesto for Agile Software Develop-
ment,” 2001; www.agilemanifesto.org.

3. E. Woods, “Return of the Pragmatic Archi-
tect,” IEEE Software, vol. 31, no. 3, 2014,
pp. 10–13.

4. P. Kruchten, R. Capilla, and J.C. Dueñas,
“The Decision View’s Role in Software
Architecture Practice,” IEEE Software,
vol. 26, no. 2, 2009, pp. 36–42.

5. E. Woods, “Architecting in the Gaps: A
Metaphor for Architecture Work,” IEEE
Software, vol. 32, no. 4, 2015, pp. 33–35.

EOIN WOODS is the chief technology officer
at Endava, a European IT services company.
Contact him at eoin.woods@endava.com.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

