
The System Context Architectural Viewpoint

Eoin Woods
Barclays Global Investors

eoin.woods@barclaysglobal.com

Nick Rozanski
Barclays Global Investors

nicholas.rozanski@barclaysglobal.com

Abstract
A common requirement when describing the

architecture of a software system is the ability to define
the environment of a system, in terms of its external
dependencies. In a view-based architectural
description approach (such as “4+1” or “Rozanski
and Woods”) this need is met by adding a Context
view containing this information to the architectural
description and ideally defining a corresponding
Context viewpoint to guide and standardise such views.
This short paper explains the benefits of adding a
Context view to architectural descriptions and provides
an outline definition of the corresponding viewpoint to
explain their content and how they are developed.

1. Introduction

The authors of this paper are also the authors of a
set of viewpoints for software architecture (known in
formally as the “Rozanski and Woods set” and defined
in [1]). The original set of viewpoints defined in our
book defines 6 viewpoints to guide the architectural
design of information systems. However a “context”
view that shows the overall context of the system being
designed was not part of the set. This short paper
explains why a context viewpoint was not defined in
the original set and why, in the light of experience, the
authors have found one to be necessary in practice. An
outline definition of a context viewpoint for our
viewpoint set is then provided, along with a brief
discussion of how other viewpoint set authors have
addressed this need.

2. Motivation for the Work

The process of software architecture involves both
inward looking and outward looking concerns. The
former are concerned with the details of the internals of
the system and the latter are concerned with how the
system interacts with its environment and serves the
needs of its primary stakeholders (such as acquirers,
end-users and support staff members).

Most software architecture definition and
description techniques focus on internal concerns and
in particular how the system’s internal structures are
designed and represented. This is perfectly natural, as
the deliverables from software architecture activities

are a set of descriptions of the system’s internal
structures, albeit with their design directly motivated
and traceable to a set of stakeholder concerns.

When we defined our viewpoint set, we also
focused on the internal structures of the system and our
viewpoint set comprises 6 viewpoints, namely the
Functional, Information, Concurrency, Development,
Deployment and Operational viewpoints. All of these
viewpoints guide the development of views that
describe one or more aspects of the system’s internal
structure.

When defining the viewpoint set, we made the
assumption that the system’s requirements had been
largely defined and that the work products of this
activity would include clear statements of the system’s
requirements including the system’s runtime context
(i.e. the external actors that the system would be
expected to interact with). While we recognise that
there is extensive interplay between architecture,
design and requirements definition, leading to an
iterative approach resulting in interaction and change
to the requirements, our assumption was that the
system context would be defined by someone other
than the architect. After all, if the system context isn’t
well defined, how can the requirements be written?

Experience has shown us to be wrong!
In reality, the software architect usually needs to

include a definition of the system’s context as part of
their architectural description (and so create a view for
it). The reasons for this include:

• the system context simply not being included in
the requirements gathering exercise;

• a system context being loosely defined by
requirements analysts, but at a level of detail
which means that the architect needs to add
significantly to it; and

• the software architect needing to reference
elements of the system context elsewhere in the
architectural description, so making it desirable
for this information to be part of the architectural
description and under the control of the architect.

This means that most of the architectural
descriptions we have created since defining our
viewpoints have included a “context view”, created
without a viewpoint definition.

In this paper, we aim to remedy this gap in our
viewpoint set by providing an outline definition of a
viewpoint to define the content of a context view. We

define the viewpoint using the same structure as we
used for our original viewpoint set [1].

3. Defining the Context Viewpoint

3.1. Overview of the Viewpoint

All systems exist in some larger environment, be it
a department, an organisation’s IT environment, a
mobile communications system or even a virtual
world. The Context view aims to answer questions
about this environment and specifically the technical
relationships that the system being designed has with
the various elements of this wider environment.

3.2. Concerns

The concerns that a context view addresses are:
• Identity and Responsibilities of External

Entities - the key information that the Context
view must define is the set of external entities that
the current system interacts with in some way, the
reason for the interaction and the responsibilities
that the external entities are assumed to fulfil in
the context of this relationship.
It is important to make sure that external entities
that the system has irregular or occasional
interactions with (e.g. systems that are only
polled for data at the end of each month) are
defined just as carefully as those which the
system interacts with continually.
Similarly, it is important to consider and carefully
define external entities that rely on this system as
well as those that this system relies on (it is very
easy to worry about what we need while rather
neglecting what others are expecting from us!)
Also make sure that different types of external
entities are considered, including systems
supplying or consuming data, systems called as
services, systems that call us as services, physical
entities such as reports and files and human actors
who need to interact with this system.

• External Interdependencies - there are
sometimes inter-dependencies between external
entities that the system interacts with. An
example could be where two systems have a data
dependency between them that means that new
data should always be sent to one of the systems,
and acknowledged, before related data is sent to
the other. These dependencies may be subtle and
must be identified as part of this process.

• Nature of the External Connections - having
defined the external entities the next concern is to
decide or discover the nature of the connections
with them. Connections can vary widely, from
high volume messaging or RPC connections,
through batch-oriented file or database interfaces,

to totally manual connections involving human
interaction or even document scanning. Some
connections may need to be secured, some may
need to implement very specific protocols.
Collecting and agreeing the fundamental
characteristics of each connection allows the
architect to start thinking about the practical
implications of them and helps to identify gaps in
knowledge and potential problems..

• Expected External Interactions - having
worked out the connections to be used, the
architect needs to understand the interactions that
are expected to occur over them and to agree
these with the owners of the external entities.
The frequency, schedule, volume and criticality of
each interaction is needed to allow the design of
appropriate solutions for them within the system.

• External Interface Definitions - at the most
detailed level of concern, the architect needs to
make sure that all of the system’s external
interfaces well defined, in the sense of making
sure that data formats, interaction sequences and
technical requirements such as message transports
are clearly specified.

3.3. Models

Context Diagram
The context diagram is the key model within a

context view, placing the system in its environment by
relating it to the external actors that it interacts with via
explicit relationships that represent the connections to
and from it. A context diagram is usually quite simple
and contains elements of the following types:

• System - the system being designed, treated as a
“black box”, with its internal structure hidden;

• External Entities - systems, people, groups and
other entities that the system interacts with; and

• Connections - the links between the external
entities and the system being designed.

The two notations that we commonly see used for
context diagrams are UML and “boxes and lines”.

The UML standard [4] doesn’t define a context
diagram, the assumption being that the context of the
system will be captured using a “use case” diagram,
with the boundary of the system being represented by a
classifier (class, component or package) that contains
the use cases or simply by a diagrammatic annotation
such as a rectangle drawn around the use cases.
However there are a number of practical difficulties
with this approach including the complexity of the
resulting diagram, the fact that the use case list may not
be available when the context diagram is created, and
the convention that the external connections will be
made to specific use cases, whereas in reality we want
to abstract this detail away and treat the system as a
“black box” in the context view.

The solution to these difficulties is to create a UML
diagram of the form shown in Figure 1.

package Context System[]

<<subsystem>>
System Being Designed

<<subsystem>>
<<external>>

External System 1

<<subsystem>>
<<external>>

External System 2

User Type 2

User Type 1

<<flow>>
user 2 input

<<flow>>
user 1 input

<<flow>>

datatype3
<<flow>>

datatype1

<<flow>>

datatype2

Figure 1. UML context diagram
This sort of UML diagram can be created using the

“use case” diagram editor of many mainstream UML
modelling tools, but in fact doesn’t share a lot of
similarity with the standard use-case diagram. The key
points about it are:

• The system is represented as a UML component,
stereotyped as a «subsystem», a stereotype found
in the UML standard profile.

• External entities that cause human interactions
with the system are represented as UML actors.

• External entities that are systems are represented
as either further subsystem components or actors,
possibly with their icons changed via stereotyping
to be more representative of them (as suggested
by the UML standard).

• Connections between the external entities and the
system being designed can be represented as
UML information flows, UML dependencies or
UML associations. Space prevents us discussing
these options in any detail, but briefly, the
advantage of the information flow is that it allows
the type of information passing over it to be made
clear within the UML meta-model. The
dependency and association don’t allow this as
easily and so this has to be stored separately or
informally. The possible disadvantage of the
information flow (and the dependency) is that
they are uni-directional and so to represent bi-
directional communication, two connections are
needed (as the example in Figure 1 shows).

So, while UML can be used to create a context
diagram, it would be fair to say that it doesn’t offer
particularly good support for it. For this reason, we
often use informal “boxes and lines” notation, drawing
something more akin to a “rich picture” of the system’s
context using a simple, ad-hoc notation (and it’s
obviously important to define the notation clearly).
Figure 2 contains an example, which is probably
familiar!

System Being
Designed

User Type 1

User Type 2

Reporting

Database

External
System 1 External

System 2

Figure 2. Informal context diagram
The advantage of the informal boxes and lines

diagram is that is can be made to be much more
expressive than plain UML, and it’s probably easier to
create in most cases. One of the major disadvantages,
apart from having to design and explain the notation, is
that this model (or picture) is separate to the rest of
your architectural models, assuming they’re in UML.
However, a number of UML modelling tools can
nowdraw this sort of informal picture, which largely
addresses this concern.

Interaction Scenarios
As well as creating a model to clearly define the

external entities and connections, it is often important
to create a secondary interaction model that illustrates
the expected interactions between your system and the
external entities. This sort of model often helps to
uncover implicit requirements and constraints (such as
ordering, volume or timing constraints) and helps to
provide a level of validation that is rarely achieved
with a context diagram alone.

Space prevents us from explaining these models in
any detail, but they are usually captured using simple
textual interaction lists (rather like those used for use-
case definitions) or UML sequence diagrams that
illustrate the interactions via a graphical notation.

Interface Definitions
It’s also worth noting that interface definitions or

specifications are an important part of defining the
system’s context. They’re usually too large and
detailed to form part of the architectural description,
but it would typically reference them to make
interaction details clear and demonstrate that such
definitions do exist for use later in the system lifecycle.

3.4. Problems and Pitfalls

Some of the common problems and pitfalls that we
have observed when developing Context views are
listed below, along with suggestions for resolution.

• Uneven Focus Across Externals - it’s easy to
focus on the key (or powerful) user groups or
external systems that you interact with. However
getting almost any of these external connections

wrong can sink a system, so they all need to be
taken into account.

• Implicit Dependencies - there are often subtle
dependencies between external entities that cause
complications when interacting with them (e.g.
assuming that a particular business entity is
instantaneously available from two systems). It’s
important to check these external inter-
dependencies early so that they don’t cause
design problems late in the day.

• Loose or Inaccurate Connection Descriptions -
it’s always tempting to get the basic idea of an
external connection and leave it at that, hoping
that the design process will drive out the details.
In fact, you always have to do this to some extent
as you can’t understand every detail of every
connection. However, it is important to
understand enough detail so that the architectural
implications can be understood.

• Complicated Interactions - interactions with
some external entities (e.g. humans or old
systems) can be a lot more complicated than
expected, so it’s easy to end up with unexpected
problems when you come to build the interfaces.

• Missing Data - you can’t check every field of
every external connection, but you do need to
understand what types of data each needs to
check that you’ve actually got it in your system.

3.5. Checklist

When developing a context view, you can use the
following list of questions as a checklist in order to
check the completeness and consistency of the view.

• Do you confident that you have identified all of
the external entities that the system needs to
interact with and their responsibilities?

• Have you got a good understanding of the nature
of the connection with each external entity?

• Is a clear interface definition available for all of
the technical interfaces? (i.e. to/from other
systems)

• Have you considered possible dependencies
between the external entities that you have to
interact with?

• Do you have a context diagram illustrating the
connections from the system to its environment,
with sufficient definition underpinning the
diagram?

• Have you explored a set of realistic scenarios for
external interactions between your system and
external actors?

4. Related Work

Although quite a number of software architecture
approaches don’t include a context view we aren’t the

only authors to note the need to define the system
environment and context clearly.

Garland and Anthony [2] specifically define a
“Context Viewpoint” in their large set of viewpoints
for information systems development, and explain how
to create this view and relate it to the later parts of the
software architecture process. This Context Viewpoint
is quite similar to the one we define here, although it is
defined using Garland and Anthony’s conventions and
so does not contain all of the information we present
here and does differ in some of the details of the advice
proffered.

The other related description we are aware of is a
discussion of context diagrams in the SEI “Views and
Beyond” approach and its view-types [3]. In this
approach, the context diagram is used as a
supplementary description, alongside the architectural
views, used to provide context for a “view packet”, to
allow the reader to understand the scope of the
architectural documentation being read. Again, there
are many similar ideas in this approach to the advice
we offer here, although we see the Context view as
more central to the architectural description and worthy
of a place as a first class architectural view in its own
right. We also provide a little more information than
this reference, due to our viewpoint description format.

5. Conclusions and Further Work

Experience since we developed our viewpoint set
has led us to believe that that a Context view is a
valuable part of almost any architectural description.
Therefore we have started the process of defining a
Context viewpoint intended to extend our viewpoint set
and guide the creation of context views.

This short paper is only a first step in the process
though, with space limits meaning that many of the
descriptions above are brief outlines that need to be
expanded to fully explain our ideas in this area. Future
work intends to address this by building on this initial
work to create a full viewpoint definition for the
Context viewpoint.

6. References

[1] Rozanski, N., and E. Woods, Software Systems
Architecture, Addison-Wesley, Upper Saddle River, 2005.
[2] Garland, J., and R. Anthony, Large-Scale Software
Architecture, Wiley, Chichester, 2003.
[3] Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord and J. Stafford, Documenting Software
Architectures, Addison-Wesley, Boston, 2002.
[4] Object Management Group (OMG), Unified Modelling
Language: Superstructure, version 2.0, www.omg.org, 2005.

