
M
e

E
a

b

a

A
R
R
A
A

K
A
S
I

1

r
(
t
a
C
e
p
2
A
p
t
w
d
2

c
m
o
a
o
u
i

h
0

The Journal of Systems and Software 99 (2015) 97–108

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

odelling large-scale information systems using ADLs – An industrial
xperience report

oin Woodsa,∗, Rabih Bashroushb

Artechra, Hemel Hempstead, UK
School of Architecture, Computing and Engineering, University of East London, London E16 2QN, UK

 r t i c l e i n f o

rticle history:
eceived 22 May 2013
eceived in revised form 4 September 2014

a b s t r a c t

An organisation that had developed a large information system wanted to embark on a programme that
would involve large-scale evolution of it. As a precursor to this, it was decided to create a comprehensive
architectural description to capture and understand the system’s design. This undertaking faced a num-
ccepted 15 September 2014
vailable online 28 September 2014

eywords:
rchitecture description language
oftware architecture discovery

ber of challenges, including a low general awareness of software modelling and software architecture
practices. The approach taken by the software architects tasked with this project included the definition
of a simple, very specific, architecture description language. This paper reports our experience of the
project and a simple ADL that we created as part of it.

© 2014 Elsevier Inc. All rights reserved.
ndustrial experience report

. Introduction

There has been a great deal of academic and some industrial
esearch into the definition of architecture description languages
ADLs) to assist with the difficult task of clearly defining the archi-
ecture of software intensive systems and there is still a significant
mount of such research underway today (Di Ruscio et al., 2010;
uenot et al., 2010; Oquendo, 2004). However, there is limited
vidence of significant industrial use of the ADLs that have been
roduced, which we believe is for a number of reasons (Bashroush,
006; Woods and Hilliard, 2005) including the narrow focus of most
DLs and the mismatch between their strengths and the needs of
ractitioners. This is particularly marked in the information sys-
ems domain, where it is difficult to find any large-scale use of ADLs,
hereas there has been some documented use of ADLs in embed-
ed and real-time systems (Oquendo, 2004; van Ommering et al.,
000; Allen et al., 2002).

In this paper, we report on the experience gained from the
reation of a large architectural description for a complicated infor-
ation system, in an environment where there was no existing use

f UML, SysML or specialist ADLs and where it was felt that such
pproaches would not be successful. We describe the experience

f that project, which was used as an opportunity to explore the
se of a simple, domain specific, architecture description notation

n an industrial context.

∗ Corresponding author. Tel.: +44 207 568 2764.
E-mail address: eoin.woods@artechra.com (E. Woods).

ttp://dx.doi.org/10.1016/j.jss.2014.09.018
164-1212/© 2014 Elsevier Inc. All rights reserved.
This paper explains the context of the project and the work
undertaken during it, including the definition of a simple graphical
notation and the experience of using the ADL with software devel-
opment teams to produce architecture description documents. We
also reflect on the experience in order to identify the lessons learned
and discuss why we did not attempt to reuse an existing ADL from
the many that can be found in the research literature.

The specific contribution of this work is to describe the expe-
rience of creating a large industrial architectural description
intended for long-term use and the factors that we found to be
important in successfully achieving this. While we did create a spe-
cific notation and structuring approach for the project, this was a
side effect of the project, not its goal, and our intention is not to
contribute yet another general purpose ADL to the research liter-
ature. In fact, as we explain at the end of the paper, based on this
specific experience, we concluded that general purpose ADLs might
be less useful for industrial use than has been previously assumed;
the ADL we created is described here merely to explain what we
found to be effective in this project.

In the next section we present an overview of related work
on ADLs in both industry and academia. Section 3 provides back-
ground information about the work and the context of the project.
Section 4 then explained the rationale and drivers of the project.
The approach used is described in Section 5. The ADL design, along
with the system architectural style is presented in Section 6. A case

study is then presented in Section 7. The experience and lessons
learned from the project are discussed in Sections 8 and 9 respec-
tively. Finally, Section 9 completes the paper with the summary
and conclusion.

dx.doi.org/10.1016/j.jss.2014.09.018
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.09.018&domain=pdf
mailto:eoin.woods@artechra.com
dx.doi.org/10.1016/j.jss.2014.09.018

9 of Syst

2

t
a
r
r
d
g
t
e
e

a
c
c

b
2
i
2
A

2
U
V
(
1
A
M
n
t
a
t
p

b
t
u
p
a
t
k
a
p
i
t
s
g
t

t
w
d

s
a
f
t
a

t
e
K
n
E

8 E. Woods, R. Bashroush / The Journal

. Related work

As explained in the previous section, this paper reports an indus-
rial experience of applying ADL concepts to the description of

 significant industrially developed information system. Directly
elated work would be other similar case studies and experience
eports. On searching the research literature, we did not find any
irectly equivalent work, where an architectural description lan-
uage was used to describe a large information system, although
here have been published reports of ADLs being used to describe
mbedded or real-time systems (such as Feiler et al., 2000; Lonn
t al., 2004).

However given that as part of this project we decided to cre-
te our own notation for the architectural description, it is worth
onsidering related work in the ADL field and why we did not
hoose to reuse an existing ADL.

Over the past two decades, an increasing number of ADLs have
een developed, largely within academia (Medvidovic and Taylor,
000; Clements, 1996). Although some ADLs have been put to

ndustrial use in specific domains (Cuenot et al., 2010; Oquendo,
004; van Ommering et al., 2000; Standard, 2006), the majority of
DL projects remain confined to laboratory-based case studies.

While ADLs originated in academia such as ACME (Garlan et al.,
000)/ADML, ABACUS (Dunsire et al., 2005), Aesop (Allen, 1997),
niCon (Shaw et al., 1996), Wright (Allen and Garlan, 1996), GEN-
OCA (Batory and Geraci, 1997), �-ADL (Oquendo, 2004), Rapide

Luckham et al., 1995), SADL (Moriconi and Riemenschneider,
997), xADL (Khare et al., 2001), ADLARS (Bashroush et al., 2005),
LI (Bashroush et al., 2008; Bashroush and Spence, 2009), Archi-
ate (Lankhorst et al., 2009) and ByADL (Di Ruscio et al., 2010), to

ame a few, all exhibit novel approaches to architecture descrip-
ion, from support for interchange and interoperability to advanced
rchitectural analysis capabilities, the vast majority tend to be ver-
ically optimised, limiting their attractiveness in many industrial
rojects.

It is important to state that many of these ADLs probably could
e used in an industrial context, but there is often no strong reason
o do so. In general, academic ADLs focus more on analytical eval-
ation and rigour while in this project, and many other industrial
rojects, the focus was more on accessibility, practicality, and the
bility to rapidly obtain a reasonably complete view of the struc-
ure and behaviour of the system. Those ADLs that do support the
ind of description we wanted to create (such as ACME and xADL)
re general-purpose languages that are not used in mainstream
ractice. Accordingly, they would have needed a lot of investment

n tailoring and extension to fit our requirements, not to mention
he tool support development effort (such as providing drawing
upport in standard tools). This meant the benefits we would have
ained from using them did not appear to be large enough to justify
he adoption overhead.

Considering these various factors together, our conclusion was
hat there was not a strong reason to adopt a research ADL for this
ork and we judged that it was going to be simpler and quicker to
evelop our own special-purpose notation.

The use of ArchiMate (Lankhorst et al., 2009) was also con-
idered given the fairly wide spectrum it provides for enterprise
rchitectural description. However, upon closer investigation, we
ound that the primitives in the ArchiMate language were not a par-
icularly good fit given our need to describe system (i.e., software)
rchitecture rather than enterprise architecture in this project.

As mentioned above, outside the area of information systems,
here have been a number of industrial applications of ADLs for

mbedded and real-time systems, from consumer electronics (e.g.,
oala van Ommering et al., 2000), �-ADL (Oquendo, 2004) to aero-
autics and automotive systems (e.g., AADL Standard, 2006) and
AST-ADL (Cuenot et al., 2010). The use of ADLs in these application
ems and Software 99 (2015) 97–108

domains has enabled automated system analysis, and automated
code generation (e.g., MetaEdit+ Smolander et al., 1991). However,
given that such capabilities were less important for this project
than our much simpler goals of easy adoption and straightforward
system description, and the fact that these ADLs are specialised for
embedded systems rather than large information systems, we did
not feel that we should receive a return on the investment required
to tailor and adopt them. We discuss our reasoning for not reusing
an existing ADL further in Section 5.

3. Background to the work

This project was undertaken in a financial services firm that has
developed a large custom information system to run its business.
The software has been developed over a period of about 15 years
and has grown from quite modest beginnings to the large system
it is today, comprising millions of lines of code, storing several ter-
abytes of information. The system includes software modules that
have been developed from scratch within the organisation along
with modules that have been acquired as a result of organisational
acquisitions and that have been modified to integrate with the rest
of the system.

Today, the system comprises about 20 major subsystems and
over 10 million lines of Java, C++, C# and Perl, sharing a large multi-
terabyte relational database. Although some members of staff who
worked on the system in its early days are still with the firm (and
actively involved with the system) it has grown to a size that means
no individual understands it all, even at a reasonably high level of
abstraction.

At the start of the project, there was no overall unified system
description, although some teams responsible for subsystems did
have their own documentation. This meant that the operation and
interconnectedness of the system was often difficult to judge and
this was starting to hinder change and evolution.

The organisation wanted to perform some wide ranging evo-
lution and modernisation of the system’s implementation and
realised that a useful first step, to enable better intellectual con-
trol over the system, would be to capture a unified description of
the system’s architecture. This led to the project described in this
paper being undertaken.

4. Overview of the project

The lack of a unified system description and a new initiative
to modernise and restructure parts of the system led senior man-
agers to initiate a project to “document” the system. At the outset
it was not entirely clear what “document” meant, but discussion
and exploration led to the conclusion that a current state archi-
tecture description was required (i.e., a description of the system’s
architecturally significant elements, responsibilities and interac-
tions, rather than more detailed documentation of the design of
individual modules).

A team of two experienced architects was tasked with this
project, with a remit to define an approach and then work with the
software development teams to create the architecture description.

One immediate complication was the lack of a clearly defined
use for the documentation once it was available. A number of
senior managers considered the creation of the documentation to
be important, but it was not clear what they intended to use it for.
Specifically, it was not clear if this was to be a living document,
that the organisation aspired to keep current, or a snapshot to be
used for planning, which would then be deliberately abandoned.

The target audience also was not well defined, so we did not know
whether it was to be a senior management planning tool or a more
detailed description to be used by designers for tasks like impact
analysis.

of Syst

a

•

•

b
w
d
a
i
f
t
m
f

5

c
t
v
l
t
v
l
m
t

o
f
o
t

•

•

•

•

E. Woods, R. Bashroush / The Journal

In order to make progress, some assumptions had to be made
nd these were:

The point of the exercise was to (a) understand what was there
today (catalogue); (b) allow change to be planned (allow impact
analysis); and (c) provide a reference for people to build knowl-
edge (communicate); and
The audience for the completed documentation was architects,
designers and development teams, so precision and complete-
ness were important attributes.

A secondary open question was whether it would be useful to
e able to automate the processing of the architecture description,
hich would require it to be captured in a parsable form with well-
efined semantics. There did not seem to be a compelling need to
chieve this, although it would have allowed a number of interest-
ng options, so it was decided to try to capture the information in a
orm that would be amenable to parsing later, but not to slow down
he project by trying to investigate this in any detail. In practice, this

eant using structured textual representations rather than free
orm word processor documents.

. The approach used

When the software development teams were approached to dis-
uss their involvement with the project, it quickly became clear
hat while there was general enthusiasm for the idea, there was
ery little appetite for actually performing the work required. This
ed us to the conclusion that the tolerance of the development
eams for learning new concepts or reworking outputs would be
ery low. Hence, it was going to be necessary to identify a simple,
ow-ceremony approach that was highly prescriptive in order to

inimise the possibility of teams producing inconsistent artefacts
hat would need to be reworked.

This initial interaction with the development teams, along with
ur assumptions about the goals of the project and the audience
or the artefacts (see Section 4), meant that there were a number
f implicit emergent requirements and constraints that we needed
o take into account. These were as follows:

Simplicity – the approach needed to be simple to understand
and apply, first because senior managers needed to understand
it quickly to agree to its use; and second, because the software
development teams who needed to produce the design docu-
ments were not prepared to expend a lot of effort on learning
a new language.
Low adoption effort – given the low tolerance for significant adop-
tion effort, people needed to be able to pick up the basics very
quickly and incrementally learn what they needed. This extended
to tooling where there was no enthusiasm for implementing, sup-
porting or learning specialised modelling tools for this project.
Familiarity – the requirement for low adoption effort also meant
that the notation and approach needed to use existing concepts

that people were already familiar with (so the notation needed to
contain the type of architectural elements found in the system,
rather than generic elements that needed to be specialised or
interpreted).
Use existing tools – as mentioned above, requiring a new mod-
elling tool to be installed and used for this effort would have
caused the project to fail, so we had to use the tools already avail-
able in the organisation (which meant general drawing tools and
wikis).
ems and Software 99 (2015) 97–108 99

Using a tailored version of UML, with a suitable UML profile
was seriously considered as the architects leading the effort already
knew UML and it would have provided a basis on which to build.
However, the organisation did not have the necessary UML tool-
ing available to make the use of a tailored version of the language
practical and even a tailored UML tool needs some background
knowledge of UML in order to use it effectively, which was lacking
in nearly all of the software development teams. The use of generic
UML without a profile was not seriously considered because we
knew it would meet with a lot of resistance and we would end up
with significant divergence in the models that the teams would
create.

Existing ADLs such as xADL (see Section 2 above) were also
briefly considered, but none of these appeared to offer any great
benefit over UML for this particular situation and like UML, all of
them would have needed significant tailoring and probably deploy-
ment of a modelling tool to make their use practical for this task.
The lack of clear benefits from the use of these languages for this
project meant that there did not seem to be compelling reasons to
use them and made their implementation costs difficult to justify.

We also considered just letting teams use their own informal
notations. In principle, this would have removed one of the major
points of resistance to the project and would have saved the effort of
developing a notation. However, this had already been attempted in
the organisation and the results were so varied that the exercise did
not yield a useful system-wide description, so we also discounted
this option.

Eventually, given all of the factors involved in this project,
we reluctantly concluded that the project was most likely to be
successful if we developed a simple, well-defined, very specific,
notation that just contained the element types that would be found
in this particular system and then provided the teams with support
for it in desktop drawing tools and a wiki.

The initial discussions with the development teams revealed a
varied understanding of modelling and abstraction, which led to a
further realisation that the approach used was going to have to
be comprehensible to modelling novices within minutes, rather
than needing much effort to learn. We concluded that in order to
avoid confusion, the models were going to have to capture spe-
cific component and connector types that described the physical
structure of the software (e.g., runtime processes and inter-process
communication channels) rather than more abstract and gener-
alised concepts such as software components and responsibilities.
If the teams had been asked to describe their software in terms
of more abstract concepts, we believe that the project would have
collapsed under the weight of debatable, unverifiable abstractions
and it would not have been possible to validate the models against
the implementation.

Given the resources available, it was decided that using a
wiki was going to be the most effective way to capture the
data underpinning a graphical representation (the system element
descriptions, connection definitions, inter-element dependencies
and so on). A wiki allowed this information to be captured in an
accessible way, without special tools, but allowed very restricted
formats to be prescribed that standardised presentation and would
be amenable to basic machine parsing later if needed.

The wiki approach of creating simple hyperlinked pages also
allowed the architecture description to be decomposed into a set
of manageable pieces, each with clear ownership, but allowed these
different pieces to be linked together to provide cross referencing
and navigation through the documentation. Hyperlinking also pro-
vides a simple sort of type checking in the documentation, as names

can be linked to their definitions elsewhere in the wiki and if the
name is wrong, a broken link results, which is immediately obvious.

We found that a wiki provides a lot of the flexibility of a
word processor, but can also provide basic mechanisms to allow

1 of Systems and Software 99 (2015) 97–108

s
t

n
t
a
t
s
g
a
2

i
g
s
a
t
n

f

•

•

•

•

•

a
l
p

t
a
t

s
g
d
c
e
w

6

6

e
n
d
t
b
c

b
u

Table 1
Types of architectural elements.

User interfaces
- GUI A traditional GUI client written in Java Swing,

C# WebForms or C++ Motif.
- WebUI A user interface implemented as a set of web

pages (typically as a set of CGI scripts or a Java
webapp)

- Command line A user interface implemented as a command line
program, such as a script or a Unix command line
utility

Servers
- Message driven server A server whose operation is driven by the receipt

of messages from the system message bus
- Server A server whose operation is driven by a

mechanism other than messages (such as RPCs,
database polling or temporal schedules)

- Batch program A program that is run from a scheduler and
performs its operation in a single execution,
without waiting for other system elements to
perform any operations or for human
intervention.

- Data loader A program whose primary purpose is to extract
data from a source and move it to a destination,
typically transforming it in some way during the
transmission.

Data stores
- System database The shared system database or a set of tables

from it
- File A file on the file system

External entities
- Subsystem Another subsystem that communicates with this

one in some way
- External system An information system outside our system that a

subsystem communicates with in some way
- External data source A data source outside our system that a
00 E. Woods, R. Bashroush / The Journal

tructuring, templating and cross referencing via simple conven-
ions and most software developers find them very easy to use.

What a wiki does not usually provide is any support for graphical
otations, but the diagrams are the part of the architecture descrip-
ion that people spend the most time creating and reading, so they
re important to get right. As explained already, having considered
he options available, it was decided to create a new highly con-
trained graphical notation that would encourage the creation of
raphical models at the right level of abstraction. In order to create

 consistent notation that was easy to use, the guidance in (Moody,
009) was followed in order to design the notation systematically.

The whole project, and in particular the definition of the graph-
cal notation, was helped by the fact that while the system had
rown rather organically, it had evolved according to a specific
et of architectural constraints that could loosely be identified as
n architectural style. This had limited the degree of implementa-
ion diversity and so reduced the number of concepts that it was
ecessary to represent in the description language.

Within the system, nearly all subsystems were comprised of the
ollowing types of elements:

Message driven servers that performed functional processing in
response to events or requests arriving from a system-wide mes-
sage bus;
“Thick” clients that provided user interfaces and business logic
(and typically communicated with the message driven servers
via the system message bus);
Web interface servers that provided web user interfaces (typi-
cally written as Java servlets or Perl modules);
Batch programs that performed some sort of periodic processing
(such as end-of-day reporting); and
Data loaders, which were a particular sort of batch program,
which imported data into the system or moved data between
subsystems.

The servers, batch programs and data loaders (and occasion-
lly clients) would in turn normally have dependencies on a fairly
arge number of database objects (that is tables, views and stored
rocedures).

This very specific set of architectural element types was used
hroughout the implementation of the system, which meant that

 simple ADL could be defined in terms of those specific element
ypes.

A corresponding set of wiki page templates was created to
upport the capture of the supporting textual description for the
raphical models in order to make the format required for the
escriptions clear. This also made the management of the pro-
ess easier as there were relatively few concepts that needed to be
xplained and it made progress easy to track in terms of completed
iki pages and sections.

. The style and its description language

.1. The architectural style

An analysis of the system’s implementation revealed that it gen-
rally followed a set of discernable patterns created from a small
umber of types of architectural elements, which could loosely be
escribed as an architectural style (taking the definition of archi-
ectural style from Shaw and Garlan (Shaw and Garlan, 1996) to
e “. . . a vocabulary of components and connector types, and a set of

onstraints on how they can be combined”).

To allow the element types of the system to be described, a few
asic concepts were used to set the context and help people to
nderstand the key abstractions:
subsystem receives data from (such as a source
of security prices)

• System – the entire information system being described, which is
a conceptual structure, composed of a number of interconnected
subsystems that collectively provide its behaviour and qualities.

• Subsystem – a subset of the system that has a well-defined, cohe-
sive, set of responsibilities, and in most cases a well-defined
boundary and set of interfaces to its services.

• Component – a tangible software artefact which is delivered to
the production environment and which is “executed” in some
way at runtime (whether directly or by being called). Nearly
all components are binary releasable elements, tracked in the
change management system. (Elsewhere in this paper we refer
to “components” as “elements” in line with much of the software
architecture literature)

• Connector – the mechanism by which two or more components
collaborate (usually by passing data between them). Examples
are a messaging, a file system file, a database table, or a web
service endpoint and invocation.

It is worth noting that even though our definitions of concepts
like “component” and “connector” were quite specific, most peo-
ple did not really understand what we meant until we made the
concepts very concrete with the specific types of component and
connector that they were familiar with.

As mentioned above, the basic types of system element used
within the system were user interface programs, servers, data
stores, external entities and a fairly specific set of connector types
were used to link them. While these generic types of element sound

fairly standard, what was interesting was the limited number of
variations of them that were used in most of the system. These
element types are summarised in Table 1.

E. Woods, R. Bashroush / The Journal of Syst

Table 2
Types of architectural connectors.

RPC A synchronous inter-process procedure call (usually
XML over HTTP)

Direct invocation An in-process direct procedure invocation (calling a
library)

Database data flow Writing data to a database table or tables to allow it to
be used by another element

File data flow Writing data to a filesystem file to allow it to be used
by another element

t

i
c
s

fi
s
t
c
H
c
p
t

F

f
i
b
c
a
i
s

6

u
s

System messaging Dispatch and receipt of messages over the system
message bus via a named messaging destination

The fairly restricted set of inter-element connectors in use
hroughout the system is described in Table 2.

In order to allow for the inevitable special cases that are found
n a system of this scale, an “other” type was also allowed for both
omponents and connectors, which could be annotated using a UML
tyle stereotype to make its type clear.

Most architectural styles limit the element and connector con-
gurations that they allow. In this style, there were not really any
uch constraints defined formally, although there were combina-
ions that were encouraged and discouraged (e.g., UI Clients should
onnect to message driven servers, but not access the database).
owever, most configurations of element and connector types
ould be found somewhere in the system! A number of the common
atterns were captured as examples in the notation documenta-
ion.

A couple of examples of the patterns identified are shown in
ig. 1.

The notation used to express the examples is explained more
ully in the next section, but briefly triangular shapes represent user
nterfaces, rectangles represent server resident elements (servers,
atch programs), files and databases are represented by the fairly
onventional “record stack” and “drum” shapes, while connectors
re represented by arrows using a variety of line types (the line type
n example (a) being messaging, the line type in example (b) being
tored data access).

.2. The architecture description language
Once the universe of required element and connector types was
nderstood, we needed a notation that would allow instances of the
tyle (i.e., the subsystems) to be clearly represented. As explained

<<GUI> >

Order Mana ger

<<Message Based S erv er>>

Order Man age ment
Server

ORDE RUIREQ(O rder UiCmd)

<<BatchPgm> >

BBG Price Loader

<<database>>

pricedb

price,rate,pricehist ,ratehist,
fileload

<<fil esystem>>

BBG Daily Pr ice Files

(a) Thick cli ent UI and mes sage driven s erver

(b) File Loader , reads files, wr ites to dat abase

Fig. 1. Examples of the ADL notation illustrating preferred configurations.
ems and Software 99 (2015) 97–108 101

earlier, we decided to define a custom notation because the initial
discussions with the teams had made it clear that getting people
to use a specific tool or invest much effort in learning the notation
was going to be very difficult. This was a key reason for creating a
very simple notation and “just drawing pictures” rather than trying
to apply a general-purpose notation or create machine readable
models.

Given people’s general enthusiasm for diagrams over text, we
chose to create a graphical notation rather than a more formal tex-
tual one. We could have created an equivalent textual notation to
provide an alternative concrete syntax, but we did not need one for
this project and as we were not trying to create a reusable ADL we
had no reason (or the time) to create alternative notations.

When defining the graphical detail of the notation, the advice in
(Moody, 2009) were particularly useful, in particular the exhorta-
tion to avoid construct overload, deficit, redundancy or excess, the
suggestion to systematically consider the visual variables of each
shape (shape, size, colour, orientation, brightness and texture) and
the need for deliberate selection of shapes so that their appearance
suggested their meaning, to help achieve semantic transparency.

We created the graphical notation by selecting a base shape for
each major type of element (server, user interface, data store, exter-
nal entity) and designing a variation of the shape for each subtype
of the element. The diagrams were likely to be printed in black and
white, so brightness and colour were used in a very limited way
(just being used as an informal diagrammatic annotation, rather
than having a predefined meaning). Each element had to have a
name, shown on its symbol and optionally a stereotype (discussed
below). Examples of the notation for some of the more important
element types are shown in Fig. 2.

A triangle was used as the base shape for user interfaces and
a rectangle for server resident components. The triangle was cho-
sen as it hinted at the head and shoulders shape of a user and the
triangles were then modified slightly for each type of user inter-
face (the thick client having sharp corners, the web user interface
having rounded corners as it blurs the distinction between “client”
and “server” and the command line utility having a graphical rep-
resentation of a command line interface added to it). Similarly,
a rectangle is the base shape for server elements (based on long
accepted conventions) with a stereotype being used to indicate the
type of server and a “lozenge” variant being used to indicate a data
loader (hinting at pieces of data being transmitted through it).

An arrow of some form was used to represent all of the con-
nector types, with the arrowhead usually indicating the direction
of data flow. All connectors were defined to be one way connec-
tions, with the exception of data access connectors, which could
indicate read and write activity with arrow heads at both ends of
the connector if appropriate. The convention for RPC connectors
was defined to be a one-way arrow from the caller to the target. No
attempt was made to represent the various complicated possibili-
ties of dependency and initiation of interaction using the connector
symbols. Each connector had to indicate what was carried over the
connection, with message flows being annotated with a message
data type, file and database connectors being annotated with table
or record names, and RPC and direct invocation connectors being
annotated with the name of the service or procedure they were
calling. Examples of the notation for the main connector types are
shown in Fig. 3.

The RPC or direct procedure call is shown using a solid arrow,
messaging is shown using a line with embedded dots, suggesting
messages flowing over it, while data access is shown using a reg-
ular chain line, suggesting records being read or written over the

connector.

A general mechanism used on elements and connectors was the
stereotype, adopted from UML, where the type of an architectural
element is made clear by annotating it with a type name using

102 E. Woods, R. Bashroush / The Journal of Systems and Software 99 (2015) 97–108

<<GUI>>

Order Manage r

<<WebUI>>

Se�lements Viewer

<<CmdUI>>

Parameter
U�ls

<<Message Drive n Serve r>>

Trade Process ing
Server

<<Server>>

Con firmation Even t
Gen erator

<<Loader>>

Daily Price Loa der

Thick Client
GUI

Web UI

Command Line
UI

Message
Driven Se rver

Non Message
Driven Se rver

Data Loader

Fig. 2. ADL element types.

<<flow transport>>

RPC / Direct Call Data Access or
Update

Application Other Messaging

 conne

t
t
g
e

b
t
s
u
a
s
w
t
t
u

p
e
o
s
(
“
C

a
s
m
d
v
t
p
d
t

a
v
d
t
c

Standard Messaging

Fig. 3. ADL

he convention “�type�” on the symbol concerned. This allowed
he casual reader to understand the types of element on the dia-
ram without having to understand the notation and allowed new
lement types to be easily introduced.

The semantics of the elements and connectors were generally
ased on the semantics of the corresponding element and connec-
or implementations in the system: broadcast messaging in the
ystem worked in a particular way, a relational database has well
nderstood behaviour, a web service call is widely understood and

 message driven server was a concept that most people under-
tood with little further explanation. Undoubtedly there were cases
here elements on diagrams had surprising behaviour because

hey did not behave entirely as expected given their type, but on
he whole, the resulting documents were good enough to form a
seful architecture description.

In order to ensure that the process produced more than just
ictures, we defined a set of required attributes for each type of
lement and connector. Part of this task was defining enumerations
f expected standard values for many of the attributes, again to
tandardise and simplify the process of recording the information
such as standard lists of data domains [“trading”, “counterparties”,
securities”, . . .], lists of programming languages in use [C++, Java,
#, Perl] and so on).

In order to simplify and standardise the subsystem descriptions,
 set of wiki page templates and a comprehensive Microsoft Visio
tencil were created, along with clear instructions, quick reference
aterial and – most crucially – a fully worked example of the

ocumentation for one subsystem. This allowed a number of con-
entions, such as hyperlinking element names to allow navigation
hrough the documents, to be illustrated and encouraged by exam-
le. A hierarchy of empty wiki pages for the required subsystem
escriptions was also created so that authors knew where to put
heir documents and so they could be unambiguously referenced.

The result of this process was a relatively informal definition of
 simple ADL with a graphical notation and set of well-defined con-

entions for storing the supporting text needed to explain and fully
efine the subsystem descriptions. The ADL is tied very strongly to
he particular architectural style of this system (its element and
onnector types) and we deliberately did not attempt to generalise
ctor types.

the language, as this very tight link to the system to be described
was one of its major strengths for our situation. In this way, our ADL
is rather like the ADLs defined to support specific implementation
frameworks like DAOP-ADL (Pinto et al., 2003) which was devel-
oped to describe DAOP applications (Pinto et al., 2001) and CBabel
(Braga and Sztajnberg, 2004) which was developed to allow the
definition of CR-RIO applications (Loques and Sztajnberg, 2004).

7. A case study of the approach in use

The system described in the case study is the Asset Management
System (AMS) a financial asset management system used by a fund
manager to support making and executing investment decisions
for a large-scale investment portfolio. The example is based on a
real subsystem from the case study, modified slightly in order to
retain anonymity.

The primary aim of the system is to allow a fund manager (or
fund management team) to manage a portfolio of holdings in finan-
cial instruments (primarily equities in this case). The system must
allow them to view the content of their portfolios and to use ana-
lytical tools and market data (such as prices, volatilities, projected
interest and foreign exchange rates and projected bond yields) to
make investment decisions. The system provides the ability for
suggested changes to portfolios to be automatically calculated on
demand or from a temporal schedule and also allows direct entry
of orders to buy or sell securities to allow for investment strate-
gies that are outside the scope of the system. Once lists of orders
to buy or sell securities are generated, the system allows them
to be dispatched to another system for execution and it receives
the results of the execution of those orders in return, to allow the
current holdings to be updated.

7.1. Architectural description
The functional structure of the AMS is described using our
system-specific ADL notation in Fig. 4.

The elements of this architectural structure are described in
Table 3.

E. Woods, R. Bashroush / The Journal of Systems and Software 99 (2015) 97–108 103

Asset Management System

<<database>>

AMSdb

pmgmt
ordermgmt

<<External>>

Trading
System

<<Messaging Server>>

Job Processor

<<Server>>

UI Server

<<GUI>>

Portfolio GUI

mktdata
pricing

riskmetrics

mktdata
pricing

riskmetrics

OrderRequest

Execution
Report

Fund Manager <<rpc>>
portfolio_service

<<Loader>>

Market Data Loader

<<External>>

Market Data
Source

<<rpc>>
data_set_service

<<Messaging Server>>

Order Gateway

pm
gm

t

ord
erm

gm
t

mktdata
pricing

riskmetrics

Rebalance
Request

OrderList
Update

Order

Fill

Fig. 4. The asset management system.

Table 3
The elements of the AMS.

Element name Type Description

Portfolio GUI GUI The responsibilities of the Graphical User Interface (GUI) are to provide the asset managers using the system with the
ability to view and analyse their portfolios, to request (and monitor progress of) long running system operations (such
as order generation) and to check, enter, dispatch and monitor orders that go for execution to trading systems. The
GUI provides a human interface and requires an RPC interface to the UI Server to provide it with services and data.

UI server Messaging server The responsibility of the UI server is to provide the data access facilities that the UI requires (accessing data from the
AMSdb internal database) and to dispatch requests for orders or for long running work (such as analysis processing) to
be carried out by other parts of the system. The UI server provides an RPC interface to expose its provided services to
the GUI and requires an SQL query interface to the system database and a messaging interface to allow it to request
and monitor order dispatch and long running work.

AMSdb Database The system database’s responsibility is to store the portfolio, analytical, market and (system) operational data that the
system requires to operate. It provides an SQL based DML interface to allow data to be inserted, manipulated or
retrieved.

Job processor Messaging server The responsibilities of the Job Processor are to execute long running processing items (“jobs”) such as investment
analytics and automated order list generation. The processor can be configured to run particular jobs on temporal
schedules and can also be requested to execute particular jobs on demand. The processor provides a message based
job control and status request interface and requires an SQL query based interface to the database.

Market data loader Loader The responsibility of the Market data loader (MDL) is to retrieve various forms of market data from an internal Market
Data Source system and load the data into the database, handling versioning and business date identification as part of
the loading process. The datasets required include securities prices, bond yields, interest rates, FX rates, volatilities,
correlations and so on. The loader requires a data retrieval interface to the MDL system, allowing data sets to be
retrieved on demand.

Order gateway Messaging server The responsibility of the order gateway is to accept incoming orders to buy and sell securities (including order
parameters such as execution strategies and price limits), to forward these requests to a trading system for execution
and then receive the execution reports (“fills”) indicating order execution and broadcast these to other interested
parts of the system. The gateway provides a message based order request interface and a broadcast status interface
and it requires a message based interface to allow order submission to a trading system.

104 E. Woods, R. Bashroush / The Journal of Systems and Software 99 (2015) 97–108

<<Messaging Server>>

Job Processor

<<database>>

AMSdb

Asset Management System – Rebalance Interactions

2: RebalanceRequest

3: pmgmt, ordermgmt

Fund Manager

<<GUI>>

Portfolio GUI

<<Server>>

UI Server

1: portfolio_service (for rebalance)
6: portfolio_service (for get status)

7: portfolio_service (for trading request)
12: portfolio_service (for get status)

4: OrderListUpdate

<<Messaging Server>>

Order Gateway

8: ExecutionRequest

<<External>>

Trading
System

9: interaction with trading system

10: ExecutionReport

5: pmgmt, ordermgmt
10: pmgmt, ordermgmt

ance s

7

m
a
p
r
s

m

i
m
c
t
o
l
c
o

8

8

t
i
d
d
w
t

r
h
a

Fig. 5. Portfolio rebal

.2. Example scenario – generate order list

The key functional scenario for this system is to allow a fund
anager to generate an order list to “rebalance” a fund based on

n analysis that identifies the theoretically optimal holdings for the
ortfolio and execute that set of buy and sell orders, reflecting the
esults in the portfolio. The interactions required to implement this
cenario are illustrated in Fig. 5.

The interactions between system elements necessary to imple-
ent this scenario are described in Table 4.
A full architectural description for a subsystem would also

nclude a lot of operational and implementation oriented infor-
ation such as links to operational instructions, links to source

ode control systems and automated build systems and links to
est specifications and results. We do not attempt to reproduce any
f that here as the majority of such information was in the form of
inks to other internal systems and nearly all of the information is
ontext dependent and so not particularly meaningful outside the
rganisation operating the system.

. The experience gained

.1. Creating the architecture description

As mentioned earlier, two experienced architects led the project
o create the architecture description, which included identify-
ng the underlying architectural style, defining a clear approach,
efining the ADL and leading the work to capture the architectural
escriptions. There were approximately 20 development teams
ho owned significant subsystems that needed to be included in

he scope of the project.

In order to organise the work, the development teams were

anked in order of the criticality of their subsystems in terms of
ow central they were to key organisational workflows and this
cted as an ordered backlog of work for the architects.
cenario interactions.

The general approach taken to the task was simple and involved
approaching each team and asking for a single person to be nomi-
nated as the owner of their documentation. A conference call was
then held with this person and the group manager to explain the
project and the approach. The team was asked to commit time and
effort to completing their documents and to commit to a timeline
for completing the agreed deliverables (a team often had a number
of subsystems that needed to be documented and for planning pur-
poses the creation of a subsystem description was decomposed into
some standard subtasks). In return, the architects leading the effort
offered training, practical assistance (such as drawing diagrams)
and to review the descriptions produced.

The interactions with different teams varied greatly, with some
teams producing their documentation largely unaided, needing
only some review and minor correction, while others were sim-
ply incapable or unwilling to produce what was needed and the
architects ended up writing most of the documentation for these
teams.

The reasons for the problems encountered with development
teams varied. In some cases it was simply a lack of interest, often
from the development manager who perhaps did not see the value
of the deliverables. However in other cases there seemed to be a
genuine difficulty in understanding how to represent their subsys-
tem. In general this seemed to stem from an inability to abstract
away from the implementation, resulting in a confusing mix of
concrete and totally abstract concepts, which they then struggled
to relate to each other. None of these subsystems were very diffi-
cult to represent and in order to make progress the architects often
stepped in and simply created the models.

Another interesting problem was tooling. Everyone in the
organisation had access to the wiki and knew how to use it, so
document authors could fill in the tables and text without any

difficulty. However, not everyone had access to Microsoft Visio and
even of those that did, some obviously did not know how to use it.
Again, the solution to this was simply for the architects overseeing
the process to create diagrams for some subsystems. This was a

E. Woods, R. Bashroush / The Journal of Systems and Software 99 (2015) 97–108 105

Table 4
Interaction descriptions for the portfolio rebalance scenario.

Step From To Type Connector Description

1 GUI UI server RPC portfolio service Fund manager selects a portfolio and instructs the system to create
an order list for it. The GUI invokes an RPC indicating that the
indicated portfolio should be rebalanced.

2 UI server Job processor Msg Rebalance
request

The UI server sends a request message to indicate that the portfolio
should be “rebalanced”. This is routed to the job processor.

3 Job processor AMSdb DB “pmgmt” &
“ordermgmt”
schemas

The Job processor receives the message and in response initiates a
portfolio analysis job to identify the theoretical optimal holdings
in the portfolio and generate buy and sell orders to move the
portfolio to that state. Portfolio state read from “pmgmt” and order
lists written to “ordermgmt”

4 Job processor UI server Msg OrderList
update

The job processor sends a status message indicating that new
order lists exist, which is routed to the UI server

5 UI server AMSdb DB “ordermgmt”
and “pmgmt”
schemas

The UI server accesses the database to get the new portfolio state
and associated order list state

6 GUI UI server RPC portfolio service The GUI calls the UI server for a status update and gets details of
the new order list in return

7 GUI UI server RPC portfolio service The GUI makes an RPC call to the UI server to indicate that the
order list should be traded

8 UI server Order gateway Msg Execution
request

The UI server creates a message to request the order list to be
traded (including the list of orders) which is routed to the order
gateway

9 Order gateway Trading system – – The order gateway sends the orders to an external trading system
and receives status updates in return as the orders are executed

10 Order gateway UI server Msg Execution
report

As the order gateway gets execution updates, it creates execution
report messages which are routed to the UI server

11 UI server AMSdb DB “pmgmt” &
“ordermgmt”
schemas

The UI server updates the database with the status of the orders
and the effect on the portfolio

olio se

u
m
o
h
c

t
l
r
s
t
a

s
o
p

8

•

12 GUI UI server RPC portf

seful lesson and provided further evidence that avoiding UML and
ore specialised modelling tools had been a good decision. In this

rganisation, requiring the use of UML and modelling tools would
ave been a significant barrier to getting architectural descriptions
reated.

Over time, a significant and useful body of subsystem descrip-
ions emerged and this allowed the architects to create a summary
evel architecture description that showed how the subsystems
elated to each other. Some use of scripting to process the wiki sub-
ystem descriptions and drawing tool macros to generate parts of
he summary level diagrams allowed some degree of automation,
lthough it was still a fairly manual process.

The process of capturing the architecture description took about
ix months, with the architects working on it approximately 60%
f their time and the development teams working on it as their
roject schedules allowed.

.2. The results of the project

The outputs of the project were as follows.

A fairly consistent architecture description for most of the system
that provided an accurate and largely complete view of its subsys-
tems, their components and their dependencies. Each subsystem
was described using a standardised approach, which captured

the same information for each one and presented it in a con-
sistent manner through the use of the templates provided. This
made the information provided easy to navigate and check for
completeness.
rvice The GUI makes RPC calls to the UI server and gets the updated
status of the orders and the changes to the portfolio in its response

• An informal definition of the architectural style used across most
of the system and the typical patterns used when implementing
it.

• A degree of visibility and understanding of the structure, scale and
interconnectedness of the system which had not been achieved
before. The consistent presentation of system design informa-
tion in a single location allowed the overall system structure to
be more easily understood compared to the previous inconsis-
tent descriptions on scattered wikis and web sites. This appeared
to allow a number of senior technical managers to achieve new
insights into the system.

• An insight into the degree of implementation uniformity between
the different subsystems of the application. While many subsys-
tems were implemented in a very similar way, like any large
system (particularly one which has had other applications inte-
grated into it), parts of this application were implemented in ways
that did not follow the normal set of conventions. While there was
already a general awareness that these less standard subsystems
existed, the models made it easier for senior technical staff to
gain visibility of this and decide whether they wished to direct
any changes to the application as a result.

As mentioned earlier, the project did not have particularly clear
goals for the architecture description once developed. A number
of people did find it insightful and there seemed to be a general
consensus that it was a useful description to have. However organi-

sational changes then meant that the architects involved moved on
to other work, so the project effectively came to an end. Since then
however another group within the firm has adopted the architec-
tural description and continued its use and maintenance (primarily

1 of Syst

t
f

8

n
c
t
6

w
t
t
d
c
p
t
g
r
a
t
G
t
w
t
d

t
s
w
t
t
w
q
n

n
t
d
a
n
a
g
e
s
t
t
w
h
w
t
m
c

t
w
w
p
p
t
w
fi
f

t

06 E. Woods, R. Bashroush / The Journal

o support production operation of the system, a use which was not
oreseen at the outset of the project).

.3. Evaluating the usefulness of the ADL

Early practical experience led to some rapid refinement of the
otation to remove ambiguities that had not been apparent to its
reators, and to introduce some missing concepts. However, after
hree or four teams had used the approach over a period of about

 weeks, the ADL itself remained stable for the rest of the project.
As the project neared completion we started to validate what

as being produced with some of the important stakeholders, par-
icularly the senior technical managers in the organisation. To do
his we met with them and demonstrated what was being pro-
uced and what the completed architectural description would
ontain, discussing possible uses of it (such as impact analysis,
re-implementation reviews, incident post-mortems and regula-
ory enquiries). We were pleased to find that this stakeholder
roup reacted positively to what they were shown, with responses
anging from fairly neutral (where the possible usefulness was
cknowledged but no specific use of it particularly interested them)
o very positive (where they wanted to start using it immediately).
iven this informal but consistently positive sentiment, we felt

hat our notation and approach had been validated (an outcome
hich was anything but certain at the start of the project, when

he use of a specific notation and a highly prescriptive form for the
ocumentation had been viewed as very risky).

A factor that was constant throughout the project was that
eams who had the ability to identify clear abstractions for their
ubsystems also appeared to find the ADL helpful and straightfor-
ard to use, as the ADL gave them a clearly defined way to represent

heir models and they did not have any difficulty in representing
heir models using it. These teams tended to create their models
ith little or no assistance once they would asked a few clarifying

uestions about the purpose of the models and the semantics of the
otation.

In contrast, teams who struggled to identify good abstractions
ever really grasped how to use the ADL and needed constant assis-
ance, to the point of needing to have parts of their architectural
escriptions completely rewritten for them. What was interesting
bout this stark contrast in modelling ability was that we could find
o obvious factor to explain it in terms of educational background,
ge, team size, technology preferences, type of subsystem, geo-
raphical location or any other relevant factor. We did observe that
ven in teams that produced good models, the ability and enthu-
iasm to do this varied and even for large subsystems we found
hat it tended to be one or two people in a team who did all of
he modelling on behalf of the rest of the team. We do not know
hether there were many other people in those teams who would
ave done an equally good job, but based on hallway conversations,
e suspect not. Our conclusion was that relatively few people in

he general population of software engineers we worked with find
odelling straightforward, but we were not sure why this was the

ase.
We interpreted this experience as validation of the approach

hat had been used. People who could create models and knew
hat they wanted to represent were able to use the ADL effectively
ith minimal training, so it was obviously usable by mainstream
ractitioners. On the other hand, the approach did not help those
eople who found it difficult to create a model. It had been hoped
hat the straightforward and prescriptive nature of the approach
ould guide people to create useful models, even if they did not

nd modelling easy, and it was a disappointment that the approach

ailed to achieve this.
Looking back to the success criteria we had set ourselves at

he start of the project, we considered whether the architectural
ems and Software 99 (2015) 97–108

description we had created was useful for our three goals to cre-
ate a catalogue of what was there, to allow impact analysis and to
facilitate communication (see Section 4).

• Create a catalogue of the current state – the project created the
first comprehensive description of the system and so provided
a very useful descriptive catalogue of the current state of the
architecture. The weakness of the architectural description as a
catalogue was that it was only as comprehensive as the authors of
each piece decided to make it. However, it was possible to cross
check it against a number of systems that were known to contain
complete lists of the elements in the production system (as they
were used for automated tasks relating to deployment). Sampling
about 30% of the architectural description and cross checking this
against the lists of deployment elements revealed a high degree
of completeness, so confidence in its use as a catalogue was high.

• Allow impact analysis – the architectural description quickly
proved its worth for impact analysis and helped considerably
with the process of understanding the impact of proposed
changes. This was primarily due to the fact that it allowed the
interconnectedness of system elements to be quickly assessed,
information that had not been easy to find before. An example of
this was a small project to migrate the interface to an important
internal service from a legacy RPC technology to the currently
strategic message based interface. The service interfaces were
designed so that they could be used in parallel and the plan was
to offer both and then slowly migrate users of the service to the
new version. The problem with this was the time it was going
to take to find all of the users of the service and so the length
of time that the parallel interfaces would be needed. The model
was in a late state of development when this project started to
think about migration and they were able to use it to discover
nearly all of the clients of their service. So rather than relying
on a service provider keeping track of the users of the service,
the model provided a structure to allow the users of the service
to declare their interest in the services they used, which was a
much more effective approach.

• Communicate – the architectural description was quickly recog-
nised to be a comprehensive knowledge base of the system’s
design information and so helped inter-team communication
(when people in one team could use it to understand another
team’s subsystem). An example of the model being used for this
sort of collaboration was when a new application, which had
been acquired as part of the acquisition of another firm, was
being integrated into the existing application as a new subsys-
tem. The existing models helped the new team see how existing
subsystems were integrated with each other and the model that
the new team created of their subsystem helped the existing
teams to understand what was being added to the system and
how it might be used. The architectural description also acted as
a single place where further information could be gathered. As
mentioned earlier, the architects involved in creating the archi-
tectural description moved onto other work soon after its initial
creation, however it does appear to have continued to be used, to
grow and to evolve, suggesting that it did fulfil this role. Eventu-
ally it was adopted by the Production Services team in the firm,
due to the value that they got from having up to date descrip-
tions of the structure and dependencies of each application, for
support tasks.

Based on this fairly informal assessment, we judged the project

to have met the goals we set for ourselves and the architectural
description became a useful resource within the organisation, as a
centralised and standardised source of design information for the
system.

of Syst

9

r
a
A
u
T
f
i

p

•

•

•

•

•

•

w
a
f
d
m
t

g
t
f
i
a
a
t
a
e
g

E. Woods, R. Bashroush / The Journal

. Lessons learned from the project

At the start of the project, no one involved in it had much expe-
ience in using ADLs in an industrial context. The experience the
rchitects had between them was limited to some simple use of
DLs in an academic context and some significant experience of
sing UML for architectural modelling in large industrial projects.
herefore, we had relatively few preconceptions as to how success-
ul the project would be and on the whole we were pleased with
ts results.

The main lessons that were learned during the course of the
roject were:

A specialised ADL can have benefits over a general modelling lan-
guage like UML and even a simple ADL can be used to create useful
results.
The more specialised an ADL is, and so the closer it matches the
implementation style of the system being modelled, the easier
people seem to find it to use. While at first glance this sounds
like an obvious point, it is contrary to the conventional indus-
trial approach of using a general modelling language like UML or
SysML and also contrasts with the domain independent nature of
most academically developed ADLs.
Carefully designing the detail of the graphical notation pays
off. Using shapes that hint at their meaning and using a range
of graphical dimensions to differentiate shapes helps people to
remember them, even if they do not guess the link between the
shape and the concept themselves. Again, this is not reflected
in mainstream notations like UML or most existing ADLs, where
little effort is made to identify meaningful symbols for concepts.
Consistency in the notation is very important and having a base
shape for a general concept with refinements to it for different
sub-concepts appears to help people considerably when inter-
preting the diagrams.
Providing high quality support materials including an example-
based description of the approach and notation, a number of
realistic completed examples and a set of templates for new doc-
uments is very important. We found repeatedly that people are
much better at “filling in the gaps” rather than following a set of
instructions and creating something from scratch.
Utilising familiar tools helps with the acceptance of the approach.
In this particular organisation, there were no complaints or diffi-
culties with the use of a wiki for the text and tables information,
whereas a very widely used commercial drawing tool (Visio)
caused problems, even with a carefully tailored template, because
it was not widely used in the organisation already.

These lessons are not all that surprising but the importance of
hat seemed to be quite minor things (such as worked examples

nd quick reference cards) is important and is useful to bear in mind
or the future. The importance of matching the ADL to the specific
omain being modelled is also a lesson that is not reflected in most
odelling languages today, which tend towards the general rather

han the specific.
Given the relative success of this project, it is natural to ask how

enerally applicable its results are and how repeatable it is likely
o be. Given what we learned during the project, particularly the
act that the specialised nature of the notation was a key factor
n its success, we feel that these lessons may well have general
pplicability, but only in the broad sense. People like to be guided
nd they like familiar tools and techniques. However the specific

ools or techniques that work will be specific to each environment
nd people in different environments will have different levels of
nthusiasm for learning new approaches. However, when trying to
et a significant amount of work done by people who are agnostic
ems and Software 99 (2015) 97–108 107

to the approach, familiarity and accessibility appear to help greatly
with acceptance.

Based on our experience, the specific suggestions that we would
make for future modelling languages are as follows:

• Create a language that is specific to a domain (e.g., real-time
control systems or enterprise information systems) and ensure
that it contains the type of modelling elements needed in that
domain. Modelling languages also need to be easily extensible
by their users, rather than modelling language experts, to allow
missing element types to be added. Of course specialising a lan-
guage limits its possible user community, but conversely that user
community is more likely to find a language that matches their
problems useful and so are more likely to use it.

• Spend time creating a rich visual notation that communicates as
much as possible using the shape, line, fill and other visual aspects
of the notation. This makes diagrams much easier for people to
understand.

• Keep modelling languages as simple as possible so that people
can start using them quickly without a great deal of training. We
have observed that modelling language constructs with complex
or obscure semantics are rarely used correctly, if they are used at
all.

• Consider how people will use the language and what they will
need in terms of tools and facilities for structuring and managing
large models. Again simple tools (and ideally extensions to tools
that people are already likely to be familiar with) are much more
likely to be successful than tools that require a lot of training and
experience to use.

• As well as the language and tools, develop the materials that
people will need in order to successfully adopt the language for
practical use. This includes task oriented training material, quick
reference guides and plenty of samples which show the value of
the language in use and provide people will examples of how to
use it well (which they will almost certainly copy).

It is worth noting that our experiences from this work and
our resulting suggestions are similar to the conclusions of a major
academic survey of practitioner requirements for ADLs (Malavolta
et al., 2013), which suggests that these lessons and requirements
reflect the needs of a significant number of industrial software
architects.

Beyond the experience we have gained in applying architectural
description techniques to a large scale problem, the particular nota-
tion and approach used in this paper may be of use to others, but
as explained earlier in the paper, this was not a goal of the project.
While some of the aspects of the notation invented will be gener-
ally familiar (e.g., servers that are driven by messaging) the overall
set of element types is specific to one environment and may well
not be directly useful elsewhere. Certainly we did not set out to
contribute yet another general purpose ADL to the world and so
reuse of the notation was not considered during its development.
We report this project in order to describe a successful application
of the concepts of architectural description notations, to record the
factors that we believe made the project successful and to capture
the lessons learned and conclusions drawn from the experience.

10. Summary and conclusions

An organisation in the financial services industry wanted to
create an architecture description for a large existing enterprise

system. In order to achieve this within acceptable cultural and time
constraints a simple, custom architecture description language was
defined in order to make the process of capturing the architecture
description as simple and prescriptive as possible.

1 of Syst

b
t
e
a
t

m
a
t
t

g
t
g
t
w
a
o
m
n

R

A

A

A

B

B

B

B

B

B

C

C

D

D

08 E. Woods, R. Bashroush / The Journal

While it was not clear at the outset whether this approach would
e successful, the ADL actually proved to be a helpful and effec-
ive tool for capturing this specific architecture description in an
ntirely industrial context. A large architecture description was cre-
ted, something that the organisation had not achieved before, and
his allowed new perspectives on the system to be gained.

What the approach did not achieve was helping those who found
odelling difficult to create effective models. People who found

bstraction difficult seemed to find it just as difficult when using
his very specific approach as when using a general-purpose nota-
ion, which was a surprise and a disappointment.

Having said that, the factor that appeared to make the approach
enerally successful was focusing on describing the specific struc-
ures in the system of interest, rather than trying to create a
eneral-purpose approach, which would be effective for other uses
oo. Other factors which contributed to the success of the approach
ere its simplicity (which traded sophistication for accessibility),

 carefully designed, consistent graphical notation, the availability
f a large amount of tutorial and reference material to guide docu-
ent authors, and the use of very familiar tools, which users of the

otation were already familiar with.

eferences

llen, R., PhD thesis 1997. A Formal Approach to Software Architecture. Computer
Science, CMU, Pittsburgh.

llen, R., Garlan, D., 1996. The Wright Architectural Specification Language. Carnegie
Mellon University, Software Engineering Institute, Pittsburgh, PA.

llen, R., Vestal, S., Cornhill, D., Lewis, B., 2002. Using an architecture descrip-
tion language for quantitative analysis of real-time systems. In: Proceedings of
the 3rd international workshop on Software and performance, Rome, Italy, pp.
203–210.

ashroush, R., Spence, I., Kilpatrick, P., Brown, T., 2006. Towards more flexible archi-
tecture description languages for industrial applications. In: Gruhn, V., Oquendo,
F. (Eds.), EWSA 2006, vol. 4344. Springer-Verlag, Nantes, France, pp. 212–219.

ashroush, R., Spence, I., 2009. An extensible ADL for service-oriented architectures.
In: Papadopoulos, G.A., Wojtkowski, W., Wojtkowski, W.G., Wrycza, S., Zupan-
cic, J. (Eds.), Information Systems Development – Towards a Service-Provision
Society. Springer, New York, pp. 227–237.

ashroush, R., Brown, T.J., Spence, I., Kilpatrick, P., 2005. ADLARS: an architec-
ture description language for software product lines. In: Proceedings of the
29th NASA/IEEE Software Engineering Workshop (SEW’29), Greenbelt, MD, pp.
163–173.

ashroush, R., Spence, I., Kilpatrick, P., Brown, T., Gilani, W., Fritzsche, M., 2008.
ALI: an extensible architecture description language for industrial applications.
In: Proceedings of the 15th IEEE International Conference on Engineering of
Computer-Based Systems (ECBS), Belfast, UK, pp. 297–304.

atory, D., Geraci, B.J., 1997. Composition validation and subjectivity in GenVoca
generators. IEEE Trans. Softw. Eng. 23, 67–82.

raga, C., Sztajnberg, A., 2004. Towards a rewriting semantics for a software archi-
tecture description language. Electron. Notes Theor. Comput. Sci. 95, 149–168.

lements, P.C., 1996. A survey of architecture description languages. In: Proceedings
of the 8th International Workshop on Software Specification and Design, p. 16.

uenot, P., Frey, P., Johansson, R., Lonn, H., Papadopoulos, Y., Reiser, M.-O., et al.,
2010. The EAST-ADL architecture description language for automotive embed-
ded software. In: Proceedings of the 2007 International Dagstuhl conference
on Model-based engineering of embedded real-time systems, Dagstuhl Castle,
Germany, pp. 297–307.

i Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A., 2010. ByADL:
an MDE framework for building extensible architecture description languages.
In: Proceedings of the 4th European Conference on Software Architecture,

Copenhagen, Denmark, pp. 527–531.

unsire, K., O’Neill, T., Denford, M., Leaney, J., 2005. The ABACUS architectural
approach to computer-based system and enterprise evolution. In: Proceedings
of the 12th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems, pp. 62–69.
ems and Software 99 (2015) 97–108

Feiler, P., Lewis, B., Vestal, S., 2000. Improving Predictability in Embedded Real-Time
Systems. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA.

Garlan, D., Monroe, R.T., Wile, D., 2000. Acme: architectural description of
component-based systems. In: Gary, T.L., Murali, S. (Eds.), Foundations of
Component-Based Systems. Cambridge University Press, New York, NY, USA,
pp. 47–67.

Khare, R., Guntersdorfer, M., Oreizy, P., Medvidovic, N., Taylor, R.N., 2001. xADL:
enabling architecture-centric tool integration with XML. In: Proceedings of the
34th Annual Hawaii International Conference on System Sciences, vol. 9.

Lankhorst, M.M., Proper, H.A., Jonkers, H., 2009. The architecture of the ArchiMate
language. In: Proceedings of the 10th International Workshop on Enterprise,
Business-Process and Information Systems Modeling (BPMDS 2009) held at
CAiSE, Amsterdam, Netherlands, pp. 367–380.

Lonn, H., Saxena, T., Torngren, M., Nolin, M., 2004. Far East: Modeling an Automotive
Software Architecture Using the East ADL.

Loques, O., Sztajnberg, A., 2004. Customizing component-based architectures by
contract. In: Component Deployment. Springer, pp. 18–34.

Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W., 1995. Speci-
fication and analysis of system architecture using Rapid. IEEE Trans. Softw. Eng.
21, 336–354.

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A., 2013. What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39, 869–891.

Medvidovic, N., Taylor, R.N., 2000. A classification and comparison framework for
software architecture description languages. IEEE Trans. Softw. Eng. 26, 70–93.

Moody, D., 2009. The “Physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35, 756–779.

Moriconi, M., Riemenschneider, R.A., 1997. Introduction to SADL 1.0: A Language for
Specifying Software Architecture Hierarchies. SRI International.

Oquendo, F., 2004. �-ADL: an architecture description language based on the
higher-order typed �-calculus for specifying dynamic and mobile software
architectures. ACM SIGSOFT Softw. Eng. Notes 29, 1–14.

Pinto, M., Fuentes, L., Troya, J.M., 2001. Towards an aspect-oriented framework in
the design of collaborative virtual environments. In: FTDCS 2001. Proceedings of
the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems,
pp. 9–15.

Pinto, M., Fuentes, L., Troya, J.-M., 2003. DAOP-ADL: an architecture description
language for dynamic component and aspect-based development. In: 2nd Inter-
national Conference on Generative Programming and Component Engineering
(GPCE ‘03), Erfurt, Germany, pp. 118–137.

Shaw, M., Garlan, D., 1996. Software Architecture: Perspectives on an Emerging
Discipline, vol. 1. Prentice Hall, Englewood Cliffs.

Shaw, M., DeLine, R., Zelesnik, G.,1996. Abstractions and implementations for archi-
tectural connections. In: Proceedings of the 3rd International Conference on
Configurable Distributed Systems. Annapolis, MD, pp. 2–10.

Smolander, K., Lyytinen, K., Tahvanainen, V.-P., Marttiin, P., 1991. MetaEdit: a flex-
ible graphical environment for methodology modelling. In: Proceedings of the
3rd International Conference on Advanced Information Systems Engineering,
Trondheim, Norway, pp. 168–193.

2006. Standard AS5506/1: SAE Architecture Analysis and Design Language (AADL).
SAE International.

van Ommering, R., van der Linden, F., Kramer, J., Magee, J., 2000. The Koala compo-
nent model for consumer electronics software. IEEE Comput. 33, 78–85.

Woods, E., Hilliard, R., 2005. Architecture description languages in practice. In: 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), Pitts-
burgh, PA, pp. 243–246.

Eoin Woods is a lead software architect for a major European banking group. His
main technical interests are software architecture, distributed systems, computer
security, and data management; he is co-author of the book “Software Systems Archi-
tecture: Working With Stakeholders Using Viewpoints and Perspectives”, published by
Addison Wesley. Eoin can be contacted via his web site at www.eoinwoods.info.

Rabih Bashroush is a Senior Lecturer in Software Engineering at the University of
East London (UEL) where he also leads the Software Architecture Research Group
(SOAR). Before that, Rabih was a Senior Engineer at the ECIT institute and held a lec-
tureship position at the Queens University of Belfast. Rabih held a number of visiting
scientist posts at a number of institutes including: the Software Engineering Insti-
tute, SEI, Carnegie Mellon University, USA; Danfoss Power Electronics, Denmark;

and Philips Research Labs, Netherlands. Rabih has a PhD from the Queens Univer-
sity Belfast; a PGCert in Higher Education from the University of East London; and a
BEng from the American University of Beirut. He is a Fellow of the UK Higher Educa-
tion Academy; Board member of IasaUK; Accreditation Board member of the Data
Centre Alliance; and Honorary member of the Korea Information Processing Society.

http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00205-2/sbref0025
http://www.eoinwoods.info/

	Modelling large-scale information systems using ADLs – An industrial experience report
	1 Introduction
	2 Related work
	3 Background to the work
	4 Overview of the project
	5 The approach used
	6 The style and its description language
	6.1 The architectural style
	6.2 The architecture description language

	7 A case study of the approach in use
	7.1 Architectural description
	7.2 Example scenario – generate order list

	8 The experience gained
	8.1 Creating the architecture description
	8.2 The results of the project
	8.3 Evaluating the usefulness of the ADL

	9 Lessons learned from the project
	10 Summary and conclusions
	References

