Top Ten Software
Architecture Mistakes

Eoin Woods

www.eoinwoods.info

Content

e Introduction
e Ten Mistakes and Some Solutions

e Recap & Conclusions

20091202 (c) Eoin Woods, 2009

Introduction for Me

e Software architect at Barclays Global Investors
e head of application architecture group for the firm
e responsible for Apex, a new equities portfolio management system

e Software architect for ~10 years
e with some enterprise architecture for about 2 years

e Co-Author of “Software Systems Architecture " book with Nick
Rozanski

e JASA and BCS Fellow, IET member, CEng

20091202 (c) Eoin Woods, 2009

Introduction for the Talk

e Based on an article written for IT Architect
e itarchitect.co.uk
e commissioned through IASA (www.iasahome.org)

e Ten mistakes that I've made and seen made
e ten is an arbitrary number, but a good size to start with
e of course there are others, your top 10 may be different

e Most are simple but they happen again and again
e solutions are also quite simple but have been effective
e I've found that simplicity usually means effectiveness

Content

e Introduction
e Ten Mistakes and Some Solutions

e Recap & Conclusions

20091202 (c) Eoin Woods, 2009

Mistake 1: Scoping Woes

e Scope creep is the enemy the delivery deadline
e expense systems that end up processing invoices!
e but too narrow a scope can be as bad as too broad

e Functional scope problems are well understood
e "'show me the money” - why is this important to you?
e "missing bricks” — the boring pieces the rest need

e Non functional scope mistakes are more difficult
e "available 24 x 7 x 365" ... or Mon-Sat 0800-2000 ?
e “Usability of the Mac” ... or perhaps better than Access ?
e “*No authorisation needed” do anything after login ?

Solution 1: Controlling Scope

e Focus ruthlessly on the problem being solved
e usually needs deep domain knowledge
e get help, ask for a range of independent opinions

e Always consider your system in the larger context
e does it solve a complete problem in your environment?

o If asked to gold plate challenge the Rol
e “how will this feature increase your effectiveness?”

o If features are missing illustrate with scenarios
e show why it won't work without the missing pieces
e may need to trade off manual business process steps

When Scopes Collide

Use

scenarios to
find this

20091202 (c) Eoin Woods, 2009

Demand Rol
to try to
eliminate this

Mistake 2: Not Casting Your Net Widely

e Systems are built to meet stakeholder needs
e everything ultimately tied to a stakeholder who cares

e The difficulty is working out who is important
e Users
e Acquirers (budget holders)
e Support staff and systems administrators?
e Vendors?

e Include everyone whose cooperation is needed
e IT Security?, IT Risk?, Compliance?
e IT Operations?

e Consider positive and negative stakeholders

20091202 (c) Eoin Woods, 2009

Solution 2: Building a Stakeholder Group

e Need a stakeholder list as early as possible
e even if not formal, you need to understand it early

e Consider who is affected by the system
e individuals and groups
e positive and negative

e Rank by influence and likelihood of disagreement
e who really cares one way or another
e how likely are they to create problems!

e Get to work on the (H:H) people immediately!
e use the ranking to prioritise communication
e earlier communication generally reduces problems

20091202 (c) Eoin Woods, 2009

Solution 2: Example Rankings

e Acquirer — sponsors the project
e probably medium or high interest but low risk (M:L)

e End Users — use whatever you build
e probably high interest, low risk if involved (H:L)

e Compliance — concerned about legal regulation
e probably medium interest, medium risk (M:M)

e IT Security — concerned about standards & risk
e probably medium interest, high risk (M:H)

o IT Infrastructure — concerned about running it
e probably high interest, medium risk (H:M)

20091202 (c) Eoin Woods, 2009

Stakeholder Groups

e Acquirers pay for the system e Suppliers provide system

. components
e Assessors check it for P

compliance e Support Staff help people to

: use the system
e Communicators create

documents and training e System Administrators keep

e Developers create it 't running

. Maintainers evolve and fix the ° 'eSters verify thatit works

system e Users have to use the system
directly

20091202 (c) Eoin Woods, 2009

Mistake 3: Focusing on Function

e End user cares what the system does
e but actually cares how it does it too
e if slow or difficult to use or just unavailable ... it won't get used
e other groups even more so (e.g. supportability)

e Easy to forget everything apart from functionality
e "when will I be able to do X?”

e rarely ask “... and how fast will that be?”

e Good design makes functions “easy” to add
e although data is often another question ... ©

e Qualities are often difficult to change later
e expensive to add security, availability, performance, ...

Solution 3: Consider Your Qualities

e Work through the standard list

e availability, compliance, evolvability, maintainability, performance,
reliability, scalability, security, supportability

e Pick your top 3 or 4
e you can’t deal with them all at once
e select by product of importance and difficulty

e Identify requirements & technical solutions
e perspectives can help in new areas

e Identify the conflicts between them and trade-off
e this is the hard (but interesting) part
e remember there usually isn’t one right answer

Solution 3: Example Trade-off

e Your system requirements state that it has to be “secure”
e sensitive operations and/or data

e YOou consider threats and risks and decide on
e client PKI certificates and two factor authentication
e role-based access control w/ information partitioning
o prevent leakage (no USB keys, no copy & paste, ...)

e Result: a secure system that meets your written requirements
e but will anyone be prepared to use this system?
e how expensive will build, operation and support be?

e SO what do you decide to trade-off?
e there’s no “right” answer to this
e example may be fine for a military system, not for call centres

Mistake 4: Boxes and Line Descriptions

e Communicating your architecture is crucial
e if N0 one understands then the architecture won't exist

e Difficult to represent architecture on paper
e complicated, large, multi-faceted, subtle, ...

e Different people care about different things
e DBAs - database, data location, data usage, ...
e IT Infra — machines, connections, middleware, ...

e One large description rarely works well
e SO consider views of your architecture

e A badly defined description never works well
e so don’t use PowerPoint/Visio boxes and lines!

20091202 (c) Eoin Woods, 2009

Solution 4: Adding Precision to Description

e USE A WELL DEFINED NOTATION

e if necessary use a very simple one
e otherwise everyone will read it their own way

e Using UML? Define conventions and stereotypes
e so what exactly is a "component” then?

e Break your description down into views
e One view per type of structure
e functional, concurrency, deployment, information, ...
e reduces confusion by separating concerns

e Be accurate, even when abstract

e suppressing detail shouldnt mean introducing errors!
e imprecise descriptions are confusing (“but I thought ...”)

Solution 4: Example View Set

Functional View Development View
Information View Deployment View
Concurrency View . | Operational View

From “Software System Architecture”, Rozanski and Woods, 2005

Solution 4: Example of Confusion

PC Client
Server
Stats Server
Statisti(:s$:|
Calculator reepees> Ace r
StatsDB
London

We probably understand this but it’s hard to be sure. What does all
of the notation mean? Are all the relationships there?

20091202 (c) Eoin Woods, 2009

Solution 4: Better Example

element interface and UML component
dependent elements represents an
using it element
\\ 7
R /
N / i
\\ 4 ObservationsMgmt
{] \\\\ Statistics {] --------------------->>O_ {]
GUI Client femm=emmememmeneas = O— A Statistics Store
_ _ ccessor
ClientActions '“'““““““““:%;)—
Jtype=SOAP} P
S T StatsQuery BulkUpdate
S "ﬁ’ ””””
v gll-" T StatsUpdate i
‘ Statistics | @ ___---7 i
tagged values used to Calculator | .-~ E
indicate interface :
characteristics if needed 4 2]
et <<external >>
stereotype used to Bulk Loader
indicate external
entity

a functional view fragment

Solution 4: Better Example

[

Data Centre Resident
Primary Server Database Server
L
_ {model =DellSC430, {model =SunFlreV 440,
Client PC memory=8GB, CPU=2x3GH£R memory=16GB, CPU=2x1.6GHz, Stereotypes show
Ny IO=FiberChannel } element types
{memory>=500MB, N -
CPU>=1.8GHz} N -1
<<process>> e -
Stats Server R <<processgroup>-"~
<<process>> H ‘QP MS_Process_Grp
Stats Client ! A
<<process>> / \\.
=4 j CI;IcuIator ! <<procbe>
J H Loader™~,
I, i : \'b\
4] hJ
UML nodes s ! “~
showing _ S / ftype=FCoal s
hardware devices / { Sseal ™S
A 24 : ~~..‘~‘\‘
//' fPro;c_esselsl ! Disk Array Tagged values
- unctiona : .
Pack < Relationships {model =StorEdge 3510 FC, record hardware
ackages show elements mapped | | g5\ required capacity =500GB} requirements
logical hardware to hardware inter-node links
groups

a deployment view fragment

Mistake 5: Forgetting It Needs to be Built

e Everyone wants to do new and cool stuff
e COBOL/VSAM vs. Ruby on Rails? Any takers for COBOL?

e Most systems could be built in a variety of styles
o file transfer or message based events or SOA?

e Using a range of technical options
e single database vs. distributed database?
e full app server vs. simple framework use?

e Every option has its own dependencies & risks

e Can your design be realised at acceptable risk and cost in your
environment?

e people, time, budget, experience, risk appetite - all have an impact

Solution 5: Grounding Your Architecture

e Consider what it takes to build your architecture
e do you have the people who can do it?
e do you have the budget and time?
e do your acquirers have the risk tolerance?
e can the organisation deal with it? (e.g. Infrastructure Group)

e Are the innovations beneficial enough to justify?
e is the added performance really needed?
e or the flexibility likely to be used?
e can the reduced time to market be capitalised upon?

e Could you achieve the same thing in other ways?
e Using existing approaches in new/better/different ways?

e Have you considered the potential downsides?

Solution 5: Example of Alternatives - SOA

SOA Benefit Alternative Approach
Loosely Coupled Messaging, ETL, common file formats,
REST, ...
Cross Platform VM-based languages, XML, HTTP, even flat
files !
Reusable Components Interfaces, component models,

architectural style, ...

Process Flexibility Traditional workflow, configurable systems
(e.g. via Spring)

Buzzword Compliant REST or Functional languages ©

this is not to say that SOA doesnOt have value, but many of its asserted
benefits can be provided more simply

20091202 (c) Eoin Woods, 2009

Mistake 6: Lack of Platform Precision

e Modern systems rely on a stack of dependencies

e virtual machines, operating systems, middleware, containers, XML
libraries, database libraries, database systems, GUI toolkits, ...

e A potential versioning nightmare

e Packaging dependencies with the application minimises version
problems

e but can’t package the OS, database, ...

e Easy to be quite imprecise about dependencies
e "Runs on Linux, WebLogic 10 and Oracle”
e chances of this ending well are slight

e Real risks if dependencies aren’t understood

20091202 (c) Eoin Woods, 2009

Solution 6: Specifying Your Platform

e The easy solution: inventory your platform
e standardise your environments
e write down exactly what you use
e impose it on your support group (or self support)

e The better solution: use standard builds
e use the “approved” software “stack” in your organisation
e stay current during development and test
e less flexible & only works if there are pre-built stacks!

e The best solution: interoperability testing
e also the most expensive solution
e allows a range of platform options to be used
e probably only appropriate for products

These are OobviousO but people often donOt actually do them!

Mistake 7: Performance Assumptions

e Performance is a hard quality to guarantee
e and unfortunately nearly everyone is interested in it!

e often dependent on environmental factors and obscure technical
details (as well as your design of course)

e difficult and expensive to test thoroughly and reliably

e Easy and tempting to assume all will be well
e test something small, multiply the answer!
e this hardly ever works

e Performance needs to be tackled early
e estimation and modelling
e testing in the small
e testing in the large

Solution 7: Assume Nothing!

e Performance is one example of a difficult quality
e plenty more: security, scalability, evolution,

e Assuming anything about qualities is a mistake
e all of them depend on a range of subtle factors

e The strategies to mitigate the risk:
e use the experience of experts
e review assumptions and designs widely
e test with prototypes and test beds
e model qualities to allow “pen and paper” analysis

e Practical testing is usually the most effective approach
e but expensive in $$ and time
e you still need to consider interaction of factors

Solution 7: Dealing with Performance

1. Capture 2. Create
Performance Performance
Requirements Models
:gfﬁmz:e 3B. Practical 5. Rework
Model Testing Architecture
4. Assess Against
Requirements

@e[acceptable] ¢ /

from the R&W O performance perspectiveO - aims to provide a guide to
avoiding performance surprises late in the day

Mistake 8: DIY Security

e Conceptually security isn’t that hard
e do I know you? can you do or see this?

e In reality security is very easy to get wrong
e vulnerability to analysis, replay or just guessing
e gaps in protection, covert channels for information
e subtle inconsistencies leading to vulnerabilities

e Security technology is often complicated
e “easier if I just build something - less risk”
e difficulties emerge in operation, breach or assessment

e Try to use standard solutions in standard ways
e otherwise get expert, experienced help

Solution 8: Reuse Infrastructure

e Examples of this other than security abound!
e e.g. high performance, scalable servers aren’t easy either

e In general reusing infrastructure is safer
e it's been written already so you know what you get
e it comes at a cost you can estimate
e you can test it to see if it works

e it probably has a lot of the problems ironed out

e But as ever it’'s a trade off to make
e generic products don’t solve your problem specifically
e they can introduce a lot of complexity and unknowns
e can introduce a lot of initial adoption cost too

Solution 8: Reusing Infrastructure

e Using an authorisation package could be complex
e cost, deployment complexity, integration complexity, runtime
dependencies, availability risks
e Authorisation just needs a (role, action, resource) table and
code to check it doesn't it?
e but it also needs administration interfaces ...
e and integration into your security processes ...
e and auditing of all changes ...
e and must be secure and tamper proof ...
e and ...

e Actually, maybe a package isn’t such a bad idea!
o if it provides everything you need reliably of course

Mistake 9: Lack of Disaster Recovery

e Early work on disaster recovery seems unnecessary
e “"No time to worry about things that may never happen”

e Unfortunately that’s rarely the case

e internal requirements (risk to the business)
e external compliance (SOX, OCC, FSA, SEC, ...)

e DR is expensive and complicated
e cost of the DR environment and process
e recovery to a DR environment never goes well initially
e running regular realistic tests is the only way to check it

e Early work on DR design is the only way to get there
e making sure the system could be recovered
e getting the dependencies set up

Solution 9: Practice, Practice, Practice

e Plan, Design, Build, Practice

e Starting planning for availability early
e can HA mitigate some of the DR situations?
e budget for the time and money needed (no surprises)

e Put DR in the design and build work

e review your designs for disaster recovery difficulties
e allow for the geographical distribution needed
e consider how you’ll deal with data loss and latency

e Practice, practice, practice

e run reasonably representative recovery exercises
e start as soon as there is a system running

Mistake 10: No Backout Plan

e We always hope that deployment will go well
e but we've all experienced situations when they don't
e many factors causing failure are outside your control

e A backout plan deals with failed deployment
e detailed concrete steps for restoring the status quo

e Easy to ignore or skimp on a backout plan
e again, an unnecessary luxury you can ill afford time for

e Without one you risk total unavailability
e “if you think education is expensive try ignorance”
e rare to find an application where this is a good trade

Solution 10: Know Where You Came From

e Reality means that upgrades go wrong
e unexpected environment, infra faults, system faults, ...

e Failed upgrades mustn’t affect availability
e but often have to use the same hardware and databases

e Upgrades need reverse gear as well as forward

e At any point you need to be able to back out (or be clear you can’t
and have a contingency)

e For large systems this is often difficult
e parallel hardware or databases? and networking, ... ?
e handling workload during long upgrade windows?
e dealing with multiple component versions concurrently
e N0 magic formula - it needs thought, ingenuity & diligence

Content

e Introduction
e Ten Mistakes and Some Solutions

e Recap & Conclusions

20091202 (c) Eoin Woods, 2009

Recap

e Scoping Woes

e Not Casting Your (Stakeholder) Net Widely
e Focusing on Functions (Forgetting Qualities)
e Using Box and Line Descriptions

e Forgetting that it Needs to be Built

e Lack of Platform Precision

e Performance Assumptions

e DIY Security

e Lack of Disaster Recovery

e No Backout Plan

20091202 (c) Eoin Woods, 2009

Summary

e No one ever said software architecture was easy
e but there are mistakes that get made again and again
e some have well known solutions, some don't

e Just an awareness often helps
e many are related to maintaining a broad view
e software architecture is more than module design

e Broad technical knowledge is valuable
e ability to deal across specialisations is key to the role

e Risk and return approach is key
e what makes the system more valuable?
e what is likely to cause it to fail?

A Few More Solutions

Software Systems Architecture
Working With Stakeholders Using

Software systems

Viewpoints and Perspectives 5 Arﬁhitﬂmurﬂ
Nick Rozanski & Eoin Woods v , &,
Addison Wesley, 2005 :

NICK ROZANSKI - EGIN W00DS

http://www.viewpoints-and-perspectives.info

Eoin Woods
contact@eoinwoods.info
WwWw.eolnwoods.info

